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Abstract. We define a type of multimode difference-squeezed states and show explicitly that
these states are entirely embedded within the non-classical domain. We then contrast multimode
difference squeezing with normal squeezing. We further analyse its delicate dependence on the
modal states. All these studies emphasize the role of the concept of difference squeezing as a
helpful theoretical tool for how to prepare the input modes to generate a squeezed output mode in
a proper multiwave nonlinear process. Finally, we also discuss the possible connection between
difference squeezing and a symmetry group.

1. Introduction

Information transmission is most important in communication networks. Coherent beams
from laser sources are widely utilized in optical fibres to attain a high signal-to-noise ratio.
However, the information precision is always bounded by the shot noise limit set intrinsically by
quantum mechanics through the Heisenberg uncertainty principle. The discovery of squeezed
states [1–4] has opened the way to beat the shot noise limit in a number of applications.
In [5] a proposition was made to use squeezed instead of coherent light in optical systems
to essentially reduce the noise in a signal. Very weak forces such as gravitational waves
would also be detected by injecting a squeezed source into the unused input port of an
interferometer [6]. Optical data bus technology was suggested in [7]: a squeezed state is to
be applied in an optical waveguide to tap a signal-carrying waveguide and a very-low-energy-
loss signal may reach many user sites without repeaters over a long distance. In principle, a
noise-free signal might be achieved if it is carried by the field component which is perfectly
squeezed. The quantum-mechanical nature of light is also manifested directly in higher-
order squeezed states. Of a single-mode type are those introduced by Hong and Mandel [8]
and by Hillery [9] (see also [10–12]). Multimode versions of higher-order squeezing were
first suggested by Hillery [13] in terms of so-called sum and difference squeezing. Yet,
only the simplest case of two modes was treated in [13]. The concept of Hillery’s sum
squeezing has been generalized to the situation of three modes by Kumar and Gupta [14]
and, of an arbitrary number of modes by Nguyen and Vo [15]. Concerning the difference
squeezing, Kumar and Gupta have recently considered the case of three modes [16]. In
this paper we make a further generalization of [13, 16] to include any mode number. The
results of [13, 16] are thus particular cases of the results we have given. In addition, some
important issues (e.g. the boundaries between difference squeezed and classical states, the
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conditions imposed on the initial modal populations, the connection to symmetry groups,
etc) omitted in [16] for three modes are clarified in detail here for an arbitrary number of
modes.

This paper is organized as follows. In the next section we define a type of multimode
difference-squeezed state and show that such states, in contrast to the sum-squeezed states
[13–15], which are non-classical and have a common border with the classical states, are
entirely embedded within the non-classical domain. Section 3 determines, within the short-
time approximation, the conditions under which the multimode difference squeezing is related
to normal squeezing. We then examine, in section 4, all the possible situations of modal states
on which the system multimode difference squeezing depends. In section 5 we show that
the connection, found in [13] for two modes, of the operators characterizing the multimode
difference squeezing to the generators of the su(2) Lie algebra is violated for a mode number
greater than two. Finally, we give our conclusions.

2. Definition

Consider a multiwave process in a nonlinear medium in whichN (� 2) modes with frequencies
ω1, ω2, . . . , ωN interact to create a novel mode with frequency	which is equal to the difference∑N−1

j=1 ωj − ωN . Such an interaction process is described by the Hamiltonian (h̄ = 1)

H =
N∑
j=1

ωjnj + 	n + f
(
b+a+

NaN−1 . . . a2a1 + h.c.
)

(1)

which could be realized, say, in a system of multi-level atoms with appropriate allowed
transitions among the levels. In (1) h.c. means Hermitic conjugate, nj = a+

j aj (n = b+b)
with a+

j , aj (b+, b) being the bosonic operators for the mode ωj (	) and f is the effective
coupling constant which is assumed to be real. The time dependence of free modes (f = 0) is
simply proportional to exp(iωj t) or exp(i	t). The interaction among modes (f �= 0) induces
a slower dependence on time and we can write

aj (t) = Aj(t) exp(−iωj t) b(t) = B(t) exp(−i	t) (2)

where Aj(t) and B(t) vary slowly in time. It is convenient to work with the operators Aj(t)

and B(t) rather than with aj (t) and b(t). Let us define for modes ωj the following ‘collective’
operator

Dϕ(t) = 1
2

[
exp(−iϕ)A+

N(t)

N−1∏
j=1

Aj(t) + exp(iϕ)AN(t)

N−1∏
j=1

A+
j (t)

]
(3)

where the phase ϕ plays the role of the angle made by Dϕ with the real axis in the complex
plane. It can be proved that for any ϕ

[Dϕ(t),Dϕ+π/2(t)] = 1
2 iL(t) (4)

with L(t) given by

L(t) = L+(t) = nN(t)

N−1∏
j=1

(1 + nj (t)) − (1 + nN(t))

N−1∏
j=1

nj (t). (5)
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In view of the commutator (4) and by virtue of the Heisenberg uncertainty relation, the product
of the variances of two variables Dϕ(t) and Dϕ+π/2(t) is given by

VDϕ(t)VDϕ+π/2(t) � 1
16 |〈L(t)〉|2. (6)

In (6) 〈· · ·〉 = 〈�| · · · |�〉 with � the system state vector denotes the quantum average and
‘V ’ denotes the variance,

VZ ≡ 〈
(�Z)2

〉
�Z ≡ Z − 〈Z〉 (7)

for an arbitrary operator Z. A collective state of modes ωj is said to be difference squeezed
along a direction ϕ if

VDϕ(t) − 1
4 |〈L(t)〉| < 0. (8)

In such squeezed states the quantum fluctuations in the variable Dϕ are reduced below their
value in a symmetric minimum-uncertainty state (VDϕ = VDϕ+π/2 = 1

4 |〈L〉|) at the expense of
the corresponding increased fluctuations in the variableDϕ+π/2 in order to justify the Heisenberg
uncertainty relation (6). To gain a deeper insight into the above-defined multimode difference-
squeezed states let us formulate VDϕ(t) in terms of the so-called multimode quasi-probability
distribution function P(α1, α2, . . . , αN) where αj is a complex number. Using the Glauber–
Sudarshan representation we obtain

VDϕ = 1
4 〈L̃〉 +

∫
P(α1, . . . , αN)

[
Re

(
ei(	t−ϕ)α∗

N

N−1∏
j=1

αj

)
− Re〈Dϕ〉

]2 N∏
j=1

d2αj (9)

with

L̃ = nN

N−1∏
j=1

(1 + nj ) + (1 − nN)

N−1∏
j=1

nj > 0. (10)

Classically, the quasi-probability distribution function P should be definitely non-negative.
Hence, a state is referred to as non-classical if the function P is negative. Then, in view of (9),
the boundary between classical and non-classical states is determined by

VDϕ = 1
4 〈L̃〉. (11)

States corresponding to VDϕ < 1
4 〈L̃〉 are obviously non-classical since for them P < 0.

Such non-classical states are not identical with the difference-squeezed states defined by (8).
Because, as can be checked from (5) and (10), 〈L̃〉 is always greater than |〈L〉|, there exists
another boundary VDϕ = 1

4 |〈L〉| which lies entirely inside the non-classical domain. This
boundary separates states which are difference squeezed from states which are not difference
squeezed. Evidently, the domain sandwiched between the two boundaries VDϕ = 1

4 |〈L〉|
and VDϕ = 1

4 〈L̃〉 contains states which are non-classical and, at the same time, are not
difference squeezed. This feature makes the difference squeezing very special compared to
other known types of squeezing (e.g. normal squeezing or sum squeezing) for which non-
classical and squeezed states coincide, since they have a common boundary with the classical
states.
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3. Relation between difference squeezing and normal squeezing

In the interaction process under consideration the mode with difference frequency 	 is created
thanks to the nonlinear coupling between the modes with frequencies ωj . Hence, it is
physically expected that difference squeezing of modes ωj and normal squeezing of mode
	 should be related to each other. We shall establish such a relationship in this section.
From the Hamiltonian (1) we derive the coupled Heisenberg equations of motion in the
form

Ȧj (t) = −if
N−1∏
q �=j

A+
q(t)AN(t)B(t) (12)

Ȧ+
N(t) = if

N−1∏
q=1

A+
q(t)B(t) (13)

Ḃ(t) = −if
N∏
q=1

Aq(t)A
+
N(t) (14)

where the dot denotes a time derivative. Differentiating (14) once again with respect to time
and making use of (12) and (13) we obtain

B̈(t) = −f 2B(t)L(t) (15)

withL(t) defined by (5). Equation (15), though simple in form, is crucial for later treatment. Its
derivation, which is a bit tricky, is presented in an appendix. Since the general time-dependent
solution of the set of coupled equations (12)–(14) is not available, let us approximately
solve them in the short-time limit in which B(t), to second order in t , depends on time
as

B(t) = B(0) + tḂ(0) + 1
2 t

2B̈(0). (16)

Note that the system evolution over a short period of time is practically relevant because the
actual interaction time is, in fact, very short in the range of picoseconds or sub-picoseconds in
tiny nanosized experimented samples. Putting (14) and (15) into (16) yields

B(t) = B(0) − if t
N−1∏
q=1

Aq(0)A
+
N(0) − 1

2f
2t2B(0)L(0). (17)

It is noticeable from (17) that the time dependence shows up via f t (not t), revealing the slow
variation of the operator B(t) as compared to b(t) since usually f 
 ωj ,	. As is well known,
mode 	 is said to be normally squeezed along the direction ϕ if

VQϕ(t) − 1
4 < 0

where Qϕ is a quadrature component of mode 	

Qϕ(t) = 1
2

[
B(t) exp(−iϕ) + B+(t) exp(iϕ)

]
. (18)

The explicit time dependence of Qϕ(t) can be obtained from (17), (18) and (3)

Qϕ(t) = Qϕ(0) + f tDϕ+π/2(0) − 1
2f

2t2C(0)Qϕ(0). (19)
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As for the variance VQϕ(t) we obtain

VQϕ(t) = VQϕ(0) + f t[〈Dϕ+π/2(0)Qϕ(0)〉 + 〈Qϕ(0)Dϕ+π/2(0)〉 − 2〈Dϕ+π/2(0)〉〈Qϕ(0)〉]
+f 2t2

[
VDϕ+π/2(0) + 〈Qϕ(0)〉〈L(0)Qϕ(0)〉 − 1

2 〈Qϕ(0)L(0)Qϕ(0)〉
− 1

2 〈L(0)Q2
ϕ(0)〉

]
. (20)

Anticipating no correlations between modes ωj and mode 	 at t = 0 reduces (20) to

VQϕ(t) = VQϕ(0) + f 2t2[VDϕ+π/2(0) − 〈L(0)〉VQϕ(0)]. (21)

Furthermore, if before the interaction process takes place there are no photons in mode 	 or
this mode is in a coherent state, i.e. VQϕ(0) = 1

4 , then we can cast (21) into the form

VQϕ−π/2(t) − 1
4 = f 2t2

[
VDϕ(0) − 1

4 sign(〈L(0)〉)|〈L(0)〉|]. (22)

Since the definition (5) does not guarantee the positivity of 〈L(0)〉, the consequences to be
gained from (22) depend on the sign of 〈L(0)〉. The latter is determined by the initial mode
populations. It follows from (5) that

〈L(0)〉 > 0 when 〈nN(0)〉 > NN (23)

and

〈L(0)〉 � 0 when 〈nN(0)〉 � NN (24)

where

NN =
∏N−1

j=1 〈nj (0)〉∏N−1
j=1 (1 + 〈nj (0)〉) − ∏N−1

j=1 〈nj (0)〉
. (25)

When 〈nN(0)〉 � NN , mode 	 departs from its initial state with an increasing variance. It
therefore cannot evolve into a squeezed state whatever the initial state of modes ωj . On the
other hand, when 〈nN(0)〉 > NN , equation (22) expresses an interesting relationship between
normal squeezing of mode	 and difference squeezing of modesωj . Namely, if at t = 0 modes
ωj are not difference squeezed then at t > 0 mode 	 will not be normally squeezed either. On
the other hand, if at t = 0 modes ωj are difference squeezed along some direction ϕ, then this
makes mode	 at an immediate later time normally squeezed along the direction ϕ−π/2. That
is, the directions of difference squeezing and normal squeezing are perpendicular to each other.
Compared to the case of sum squeezing [15], difference squeezing versus normal squeezing, i.e.
the relationship (22), requires an additional constraint to be imposed on the mode populations,
equation (23). In particular, for the two-mode case this constraint implies that the lower-
frequency mode must be populated more than the higher-frequency mode: 〈n2(0)〉 > 〈n1(0)〉
(for ω2 < ω1), in agreement with [13]. This point was not argued at all in [16] when dealing
with three modes. Following (23), the required inequality for the population of the modes for
N = 3 is

〈n3(0)〉 > 〈n1(0)〉〈n2(0)〉
1 + 〈n1(0)〉 + 〈n2(0)〉 . (26)
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4. Difference squeezing as governed by modal states

By definition, the difference squeezing bears a collective character. Naturally, this type of
squeezing depends on the state of individual modes that constitute the multimode state. In
this section we shall study such delicate dependences in detail. To that end, it is convenient
to work with direction-independent conditions for the occurrence of squeezing. It is known
from [13] that a mode ωk is normally squeezed if and only if

1
2 > |〈Ak〉 − 〈Ak〉2| − 〈nk〉 + |〈Ak〉|2 > 0. (27)

Next, as learnt from [15], if K uncorrelated modes ω1, ω2, . . . , ωK are sum squeezed, then∣∣∣∣ K∏
k=1

〈
A2

k

〉 − K∏
k=1

〈Ak〉2

∣∣∣∣ > K∏
k=1

〈nk〉 −
K∏
k=1

|〈Ak〉|2. (28)

For a later purpose, it is necessary to determine the upper bound of the left-hand side of (28).
By virtue of the Schwarz inequality and the fact that (x + y/2)2 � x(x + y) for any x, y > 0,
we are able to derive the inequality

K∏
k=1

〈nk〉 −
K∏
k=1

|〈Ak〉|2 + 1
2

( K∏
k=1

〈1 + nk〉 −
K∏
k=1

nk

)
>

∣∣∣∣ K∏
k=1

〈
A2

k

〉 − K∏
k=1

〈Ak〉2

∣∣∣∣. (29)

Combining (28) and (29) yields the necessary and sufficient condition for the K uncorrelated
modes to be sum squeezed as follows:

1
2

( K∏
k=1

〈1 + nk〉 −
K∏
k=1

nk

)
>

∣∣∣∣ K∏
k=1

〈
A2

k

〉 − K∏
k=1

〈Ak〉2

∣∣∣∣ −
K∏
k=1

〈nk〉 +
K∏
k=1

|〈Ak〉|2 > 0. (30)

Concerning the multimode difference squeezing, it is easy to verify the following condition:
a set of N modes are difference squeezed if and only if∣∣∣∣

〈(
A+

N

N−1∏
j=1

Aj

)2〉
−

〈
A+

N

N−1∏
j=1

Aj

〉2∣∣∣∣ >
〈
(1 + nN)

N−1∏
j=1

nj

〉
−

∣∣∣∣
〈
A+

N

N−1∏
j=1

Aj

〉∣∣∣∣2

which for uncorrelated modes becomes∣∣∣∣〈A+2
N

〉 N−1∏
j=1

〈
A2

j

〉 − 〈
A+

N

〉2 N−1∏
j=1

〈Aj 〉2

∣∣∣∣ > (1 + 〈nN 〉)
N−1∏
j=1

〈nj 〉 − ∣∣〈A+
N

〉∣∣2
N−1∏
j=1

|〈Aj 〉|2. (31)

Now we are in the position to study difference squeezing versus modal states. We have
examined all the possible situations and the results obtained are summarized in the form of a
set of theorems as follows.

Theorem 1. If there is at least one mode which is in a Fock state, then the multimode system
is not difference squeezed.

Proof. Being in a Fock state of mode ωl means〈
A

q

l

〉 = 〈Al〉q = 〈
A

+q
l

〉 = 〈
A+

l

〉q = 0 q = 1, 2, . . . and 〈nl〉 > 0. (32)

The properties (32) make the left-hand side of (31) vanish identically, while its right-hand side
is equal to (1 + 〈nN 〉)∏N−1

j=1 〈nj 〉 > 0. The inequality (31) does not hold and, thus, difference
squeezing cannot appear. �
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Theorem 2. If all modes are coherent, then the multimode system is not difference squeezed.

Proof. This theorem is trivially true since a coherent state of mode ωl satisfies the properties〈
A

q

l

〉∗ = 〈Al〉∗q = 〈
A

+q
l

〉 = 〈
A+

l

〉q �= 0 and 〈nl〉 = |〈Al〉|2 = ∣∣〈A+
l

〉∣∣2
> 0. (33)

Applying (33) to (31) leads to left-hand side = 0 and right-hand side = 〈nN 〉 ∏N−1
j=1 〈nj 〉 > 0

which implies the absence of difference squeezing. �

Theorem 3. If mode ωN is squeezed but all the other modes are coherent, then the multimode
system is not difference squeezed.

Proof. Taking (31) and (33) into account, difference squeezing would arise if∣∣〈A+2
N

〉 − 〈
A+

N

〉2∣∣ > 1 + 〈nN 〉 − ∣∣〈A+
N

〉∣∣2
. (34)

Since mode ωN is squeezed the inequalities like (27) should hold

1
2 >

∣∣〈A2
N

〉 − 〈AN 〉2
∣∣ − 〈nN 〉 + |〈AN 〉|2 > 0. (35)

Surely, equation (34) cannot be fulfilled because of (35). Hence, there is no difference
squeezing. �

Theorem 4. If there is a mode ωk with 1 � k � N − 1 which is being squeezed and all the
remaining modes are coherent, then the multimode system will be difference squeezed when
〈nk〉 < 〈nN 〉/2.

Proof. Upon using (33) the condition (31) for difference squeezing simplifies to

∣∣〈A2
k

〉 − 〈Ak〉2
∣∣ > 〈nk〉

〈nN 〉 + 〈nk〉 − |〈Ak〉|2. (36)

Since mode ωk is squeezed the inequalities (27) should hold. Comparing (27) and (36) reveals
that both of them will be satisfied when

〈nk〉
〈nN 〉 < 1

2 . (37)

Whenever (37) is violated, difference squeezing is absent. It is worth noting here that the
populations of modes other thanωk andωN play no roles in generating the difference squeezing.

�

Theorem 5. If there are Q modes ω1, ω2, . . . , ωQ with 1 < Q � N − 1 which is squeezed
and all the other modes are coherent, then the multimode system will be difference squeezed
when the modes ω1, ω2, . . . , ωQ are sum squeezed and, in addition to that, their populations
must satisfy the constraint

Q∏
q=1

〈nq〉
/( Q∏

q=1

〈1 + nq〉 −
Q∏

q=1

〈nq〉
)
< 〈nN 〉/2.
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Proof. In this situation the condition (31) reads∣∣∣∣ Q∏
q=1

〈
A2

q

〉 − Q∏
q=1

〈Aq〉2

∣∣∣∣ >
∏Q

q=1〈nq〉
〈nN 〉 +

Q∏
q=1

〈nq〉 −
Q∏

q=1

|〈Aq〉|2. (38)

Obviously, if the Q modes {ωq} are not sum squeezed, then (38) is violated due to (28). Yet,
sum squeezing is not sufficient. Paying attention to (30), the occurrence of difference squeezing
requires, in addition, that the populations of modes {ωq} and mode ωN satisfy the inequality∏Q

q=1〈nq〉
〈nN 〉 <

1

2

( Q∏
q=1

〈1 + nq〉 −
Q∏

q=1

〈nq〉
)

(39)

with no constraints on the population of the remaining modes, i.e. modes
ωQ+1, ωQ+2, . . . , ωN−1. This theorem contains the preceding one as a particular case. �

Theorem 6. If modes ω1, ω2, . . . , ωQ with 1 � Q � N − 1 as well as mode ωN are squeezed
while the remaining modes are coherent, then the multimode system may or may not be
difference squeezed.

Proof. In this case, a definite determination of the constraints for the system to be or not to
be difference squeezed is impossible in general. We shall thus proceed by means of explicit
examples in certain limits. Let us examine the inequality

|X| > Y (40)

where we have identified

X ≡ 〈
A+2

N

〉 Q∏
q=1

〈
A2

q

〉 − 〈
A+

N

〉2 Q∏
q=1

〈Aq〉2 (41)

and

Y ≡ (1 + 〈nN 〉)
Q∏

q=1

〈nq〉 − ∣∣〈A+
N

〉∣∣2
Q∏

q=1

∣∣〈Aq〉
∣∣2
. (42)

The multimode system state vector |�〉 underlying this theorem reads

|�〉 =
Q∏

q=1

⊗|αq, zq〉 ⊗
N−1∏

j=Q+1

⊗|αj , 0〉 ⊗ |αN, zN 〉 (43)

where

|αk, zk〉 = exp
(
z∗
kA

2
k − zkA

+2
k

)
exp

(
αkA

+
k − α∗

kAk

)|0〉 (44)

with

zk = ρk exp(iϑk) αk = rk exp(iθk) and ρk, ϑk, αk, rk real (45)
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describes a squeezed state (k = 1, 2, . . . ,Q,N) or a coherent state (Q < k < N ). The
quantum averages of interest are

〈Ak〉 ≡ 〈�|Ak|�〉 = αk = 〈
A+

k

〉∗
(46)〈

A2
k

〉 ≡ 〈
�

∣∣A2
k

∣∣�〉 = α2
k − eiϑk cosh ρk sinh ρk = 〈

A+2
k

〉∗
(47)

〈nk〉 ≡ 〈�|nk|�〉 = |αk|2 + sinh2 ρk. (48)

We first consider a limiting case in which r1 = · · · = rQ = rN = r = O(1) and
ρ1 = · · · = ρQ = ρN = ρ 
 1. Then, we can expand in powers in ρ and, as a result,
we have

|X| = ρr2Q

(
e−iϑN+2i

∑Q
q=1 θq + e−2iθN

Q∑
q=1

ei(θq+2
∑Q

q �=q θp)

)
+ O(ρ2) (49)

and

Y = r2Q + O(ρ2). (50)

Clearly, from (49) and (50), for arbitrary phases, to leading order in ρ, |X| � O(ρ) < Y =
O(1) indicating no difference squeezing of the multimode system. Another limit we next
consider is rN = R = O(1) and r1 = · · · = rQ = ρ1 = · · · = ρQ = ρN = ρ 
 1. In this
limit,

|X| = ρQR2 exp

[
i

Q∑
q=1

ϑq − 2iθN

]
+ O(ρQ+1) (51)

and

Y = ρ2Q
[
2Q +

(
2Q − 1

)
R2

]
+ O(ρ2Q+2). (52)

Clearly, from (51) and (52), for arbitrary phases, to leading order in ρ, |X| = O(ρQ) > Y =
O(ρ2Q), indicating the occurrence of difference squeezing. Two different limits yield two
opposite results. This has proven the theorem. Note that in the above-considered limits the
relative ratio between the coherence and squeezing amplitudes are of importance but no role
is played by the phases. In general, all the modal parameters, including phases, influence the
possibility of the system difference squeezing. �

5. Relation between difference squeezing and a symmetry group

The relation between various types of squeezing and Lie algebras has been exploited by a
number of authors (see, e.g., [17–19]). It was demonstrated in [13] that for two modes the sum-
squeezing characteristic operators form a representation of the su(1, 1) Lie algebra, whereas
the difference-squeezing characteristic operators form a representation of the su(2)Lie algebra.
The connection of sum squeezing to the su(1, 1) symmetry group has been shown (see [15])
to hold in the most general case, i.e. for an arbitrary mode number N � 2. To test whether
there is a symmetry group to which the difference squeezing is related for an arbitrary N � 2,
we calculate the general commutator [Dϕ,L]. As a result, we arrive at

[Dϕ,L] = 1
2

[
exp(−iϕ)M1A

+
N

N−1∏
j=1

Aj + exp(iϕ)M2AN

N−1∏
j=1

A+
j

]
(53)
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where

M1 =
[
nN

N−1∏
j=1

(nj + 1) − 2(nN + 1)
N−1∏
j=1

nj + (nN + 2)
N−1∏
j=1

(nj − 1)

]
(54)

and

M2 =
[

2nN
N−1∏
j=1

(nj + 1) − (nN + 1)
N−1∏
j=1

nj − (nN − 1)
N−1∏
j=1

(nj + 2)

]
. (55)

As can be checked from (53) and (55), only for N = 2, in which case M1 = −M2 = −2, the
three operators Dϕ , Dϕ+π/2 and L form a closed group: they are proportional to the generators
of the su(2) Lie group, as was pointed out in [13]. Nevertheless, for N � 3 the operators
{Dϕ,Dϕ+π/2, L} do not form an algebra and, thus, there is no connection of the difference
squeezing to any symmetry group. This point was completely skipped in [16] when dealing
with N = 3.

6. Conclusion

In conclusion, we have defined a type of multimode difference squeezing which is relevant
to physical processes in which a difference-frequency is generated in a nonlinear medium via
multiwave coupling. Our consideration holds for arbitrary N � 2 modes and is therefore
a natural generalization of the cases studied previously by Hillery [13] for N = 2 and, by
Kumar and Gupta [16] for N = 3. The defined difference squeezing is shown to be very
special compared to other known types of squeezing, in the sense that around its existence
domain there are no nearby classical states at all. Being a collective multimode state, the
difference squeezing is delicately governed by the states of individual modes. Our detailed
analysis reveals that (a) the system can never be difference squeezed if among the modes
there is at least one mode which is in a Fock state or all the modes are coherent or mode
ωN is squeezed but all the remaining ones are coherent and (b) the system may or may not
be difference squeezed in all other situations for the modal states. In short, squeezing of at
least one among the modes ω1, ω2, . . . , ωN−1 is necessary (but not sufficient) for N -mode
difference squeezing. In particular, difference squeezing of the system is not guaranteed even
when all the N modes are individually squeezed (see theorem 6 with Q = N − 1). We
have also proven that whenever the modal initial populations satisfy a certain constraint the
difference-frequency generation converts difference squeezing to normal squeezing with their
squeezing directions being perpendicular to each other. Finally, we have found explicitly
that the relation between the difference squeezing and a symmetry group exists only in the
two-mode regime, in which case the symmetry group is the su(2) Lie one. Concerning the
physics one might ask how to measure the quantity associated with the ‘collective’ operatorDϕ

defined by (3)? In fact, it is not necessary to measure it directly. This operatorDϕ is introduced
just to show that one is able to produce the output mode 	 in a squeezed state if beforehand
one prepared the input modes {ωj } in a difference-squeezed state (see the relation (22)). The
question of how to prepare a difference-squeezed state of the input modes is guided by the
theorems proven in section 4. Namely, if the input modes are those underlying the situations
of theorems 1–3, then difference squeezing is impossible and thus squeezed output cannot be
generated. Under the situations of theorems 4–6 certain conditions for the modal populations
should be met to obtain the output mode as a squeezed one. In other words, the concept of
difference squeezing can be looked upon as a useful intermediate theoretical tool to help find
out how to prepare the input modes to generate the squeezed output mode through a nonlinear
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multimode system. Finally, from a general point of view, the problem under consideration
could be of fundamental interest because it once again directly demonstrates a non-classical
effect originated from the quantum nature of light. The concept of difference squeezing is,
however, by no means limited to photons. It might apply equally to elementary excitations
such as excitons, biexcitons, phonons, plasmons, etc in condensed matter at low densities since
these behave, to a good approximation, like ideal bosons.
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Appendix

This appendix derives equation (15). From (14) it follows that

B̈ = −if

(N−1∏
k=1

AkA
+
N

)·

= −if
(
Ȧ1A2 . . . AN−1A

+
N + A1Ȧ2A3 . . . AN−1A

+
N + · · · + A1 . . . AN−1Ȧ

+
N

)
. (A1)

Using (12) and (13) in (A1) yields

B̈ = −f 2B[n2 . . . nN−1(1 + nN) + (1 + n1)n3 . . . nN−1(1 + nN)

+ · · · + (1 + n1) . . . (1 + nN−2)(1 + nN) − (1 + n1) . . . (1 + nN−1)

+nN(1 + n1) . . . (1 + nN−1) − nN(1 + n1) . . . (1 + nN−1)]. (A2)

On the last line of (A2) we have used a little trick. Namely, we have added and subtracted by
hand the same quantity nN(1 + n1) . . . (1 + nN−1). Leaving the term preceding the last term as
it is and grouping the two terms with a minus sign within the square brackets cast (A2) into

B̈ = −f 2B

{
(1 + nN)[n2 . . . nN−1 + (1 + n1)n3 . . . nN−1

+ · · · + (1 + n1) . . . (1 + nN−3)nN−2 + (1 + n1) . . . (1 + nN−2)

−(1 + n1) . . . (1 + nN−1)] + nN

N−1∏
k=1

(1 + nk)

}
. (A3)

Within the square brackets of (A3) we sum up successively term by term from bottom to top
and obtain

B̈ = −f 2B

{[
−(1 + nN)

N−1∏
k=1

nk

]
+ nN

N−1∏
k=1

(1 + nk)

}
. (A4)

Equation (A4), due to (5), is nothing else but the desired equation (15).
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